Chapter 6

Binary Trees

This chapter introduces one of the most fundamental structures in com-
puter science: binary trees. The use of the word tree here comes from
the fact that, when we draw them, the resultant drawing often resembles
the trees found in a forest. There are many ways of ways of defining bi-
nary trees. Mathematically, a binary tree is a connected, undirected, finite
graph with no cycles, and no vertex of degree greater than three.

For most computer science applications, binary trees are rooted: A
special node, r, of degree at most two is called the root of the tree. For
every node, u # r, the second node on the path from u to r is called the
parent of u. Each of the other nodes adjacent to u is called a child of u.
Most of the binary trees we are interested in are ordered, so we distinguish
between the left child and right child of u.

In illustrations, binary trees are usually drawn from the root down-
ward, with the root at the top of the drawing and the left and right chil-
dren respectively given by left and right positions in the drawing (Fig-
ure 6.1). For example, Figure 6.2.a shows a binary tree with nine nodes.

Because binary trees are so important, a certain terminology has de-
veloped for them: The depth of a node, u, in a binary tree is the length of
the path from u to the root of the tree. If a node, w, is on the path from u
to r, then w is called an ancestor of u and u a descendant of w. The subtree
of a node, u, is the binary tree that is rooted at u and contains all of u’s
descendants. The height of a node, u, is the length of the longest path
from u to one of its descendants. The height of a tree is the height of its
root. A node, u, is a leaf if it has no children.
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§6 Binary Trees
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Figure 6.1: The parent, left child, and right child of the node uin a BinaryTree.

(a) (b)

Figure 6.2: A binary tree with (a) nine real nodes and (b) ten external nodes.
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BinaryTree: A Basic Binary Tree §6.1

We sometimes think of the tree as being augmented with external
nodes. Any node that does not have a left child has an external node as
its left child, and, correspondingly, any node that does not have a right
child has an external node as its right child (see Figure 6.2.b). It is easy
to verify, by induction, that a binary tree with n > 1 real nodes has n+1
external nodes.

6.1 BinaryTree: A Basic Binary Tree

The simplest way to represent a node, u, in a binary tree is to explicitly
store the (at most three) neighbours of u:

BinaryTree
class BTNode<Node extends BTNode<Node>> {
Node left;
Node right;
Node parent;

}

When one of these three neighbours is not present, we set it to nil.
In this way, both external nodes of the tree and the parent of the root
correspond to the value nil.

The binary tree itself can then be represented by a reference to its root
node, r:

BinaryTree

Node r;

We can compute the depth of a node, u, in a binary tree by counting
the number of steps on the path from u to the root:

BinaryTree

int depth(Node u) {
int d = 0;

while (u !'=r) {
u = u.parent;

d++;

135



§6.1 Binary Trees

}

return d;

}

6.1.1 Recursive Algorithms

Using recursive algorithms makes it very easy to compute facts about bi-
nary trees. For example, to compute the size of (number of nodes in) a
binary tree rooted at node u, we recursively compute the sizes of the two
subtrees rooted at the children of u, sum up these sizes, and add one:

BinaryTree
int size(Node u) {

if (u == nil) return 0;

return 1 + size(u.left) + size(u.right);

}

To compute the height of a node u, we can compute the height of u’s
two subtrees, take the maximum, and add one:

BinaryTree

int height(Node u) {

if (u == nil) return -1;

return 1 + max(height(u.left), height(u.right));
}

6.1.2 Traversing Binary Trees

The two algorithms from the previous section both use recursion to visit
all the nodes in a binary tree. Each of them visits the nodes of the binary
tree in the same order as the following code:

BinaryTree

void traverse(Node u) {
if (u == nil) return;
traverse(u.left);
traverse(u.right);

}
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BinaryTree: A Basic Binary Tree §6.1

Using recursion this way produces very short, simple code, but it can
also be problematic. The maximum depth of the recursion is given by the
maximum depth of a node in the binary tree, i.e., the tree’s height. If the
height of the tree is very large, then this recursion could very well use
more stack space than is available, causing a crash.

To traverse a binary tree without recursion, you can use an algorithm
that relies on where it came from to determine where it will go next. See
Figure 6.3. If we arrive at a node u from u.parent, then the next thing to
do is to visit u.left. If we arrive at u from u.left, then the next thing to
do is to visit u.right. If we arrive at u from u.right, then we are done
visiting u’s subtree, and so we return to u.parent. The following code
implements this idea, with code included for handling the cases where
anyofujeft,UJight,oruparentisniL

BinaryTree

void traverse2() {
Node u = r, prev = nil, next;
while (u !'= nil) {

if (prev == u.parent) {
if (u.left != nil) next = u.left;
else if (u.right != nil) next = u.right;
else next = u.parent;

} else if (prev == u.left)
if (u.right != nil) next
else next = u.parent;

} else {
next = u.parent;

}

prev = u;

u = next;

{

u.right;

The same facts that can be computed with recursive algorithms can
also be computed in this way, without recursion. For example, to com-
pute the size of the tree we keep a counter, n, and increment n whenever
visiting a node for the first time:
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u.parent

u.left u.right

Figure 6.3: The three cases that occur at node u when traversing a binary tree
non-recursively, and the resultant traversal of the tree.

BinaryTree

int size2() {
Node u = r, prev = nil, next;

int n = 0;
while (u != nil) {
if (prev == u.parent) {
n++;

if (u.left != nil) next = u.left;
else if (u.right != nil) next = u.right;
else next = u.parent;

} else if (prev == u.left) {
if (u.right != nil) next = u.right;
else next = u.parent;

} else {
next = u.parent;

}

prev = u;

u = next;

}

return n;

}

In some implementations of binary trees, the parent field is not used.
When this is the case, a non-recursive implementation is still possible,
but the implementation has to use a List (or Stack) to keep track of the
path from the current node to the root.
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Figure 6.4: During a breadth-first traversal, the nodes of a binary tree are visited
level-by-level, and left-to-right within each level.

A special kind of traversal that does not fit the pattern of the above
functions is the breadth-first traversal. In a breadth-first traversal, the
nodes are visited level-by-level starting at the root and moving down,
visiting the nodes at each level from left to right (see Figure 6.4). This is
similar to the way that we would read a page of English text. Breadth-first
traversal is implemented using a queue, g, that initially contains only the
root, r. At each step, we extract the next node, u, from q, process u and
add u.left and u.right (if they are non-nil) to q

BinaryTree

void bfTraverse() {
Queue<Node> q = new LinkedList<Node>();
if (r != nil) g.add(r);
while (!q.isEmpty()) {
Node u = q.remove();
if (u.left != nil) q
if (u.right != nil
}

.add(u.left);
) g.add(u.right);

}
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Figure 6.5: A binary search tree.

6.2 BinarySearchTree: An Unbalanced Binary Search
Tree

A BinarySearchTree is a special kind of binary tree in which each node,
u, also stores a data value, u.x, from some total order. The data values in a
binary search tree obey the binary search tree property: For a node, u, every
data value stored in the subtree rooted at u.left is less than u.x and every
data value stored in the subtree rooted at u.right is greater than u.x. An
example of a BinarySearchTree is shown in Figure 6.5.

6.2.1 Searching

The binary search tree property is extremely useful because it allows us
to quickly locate a value, x, in a binary search tree. To do this we start
searching for x at the root, r. When examining a node, u, there are three
cases:

1. If x < u.x, then the search proceeds to u.left;
2. If x > u.x, then the search proceeds to u.right;
3. If x = u.x, then we have found the node u containing x.

The search terminates when Case 3 occurs or when u = nil. In the former
case, we found x. In the latter case, we conclude that x is not in the binary
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search tree.

BinarySearchTree

T £findEQ(T x) {
Node u = r;
while (u !'= nil) {
int comp = compare(x, u.x);
if (comp < 0)
u = u.left;
else if (comp > 0)
u = u.right;
else
return u.x;

}

return null;

Two examples of searches in a binary search tree are shown in Fig-
ure 6.6. As the second example shows, even if we don’t find x in the tree,
we still gain some valuable information. If we look at the last node, u, at
which Case 1 occurred, we see that u.x is the smallest value in the tree that
is greater than x. Similarly, the last node at which Case 2 occurred con-
tains the largest value in the tree that is less than x. Therefore, by keeping
track of the last node, z, at which Case 1 occurs, a BinarySearchTree can
implement the find(x) operation that returns the smallest value stored in
the tree that is greater than or equal to x:

BinarySearchTree

T find(T x) {
Node w = r, z = nil;
while (w != nil) {
int comp = compare(x, w.x);
if (comp < 0) {
zZ =w;
w = w.left;
} else if (comp > 0) {
w = w.right;
} else {
return w.x;

}
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7
(3) (1
® O, ®
® © © O

(a) (b)

Figure 6.6: An example of (a) a successful search (for 6) and (b) an unsuccessful
search (for 10) in a binary search tree.

}

return z == nil ? null : z.x;

6.2.2 Addition

To add a new value, x, to a BinarySearchTree, we first search for x. If we
find it, then there is no need to insert it. Otherwise, we store x at a leaf
child of the last node, p, encountered during the search for x. Whether the
new node is the left or right child of p depends on the result of comparing
x and p.x.

BinarySearchTree

boolean add(T x) {
Node p = findLast(x);
return addChild(p, newNode(x));

}
BinarySearchTree
Node findLast(T x) {
Node w = r, prev = nil;
while (w != nil) {
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}
}

}
}

}

BinarySearchTree: An Unbalanced Binary Search Tree

prev = w;
int comp = compare(x, w.x);
if (comp < 0) {

w = w.left;

else if (comp > 0) {
w = w.right;

else {

return w;

return prev;

§6.2

BinarySearchTree

r

}

}

}
}

n++;

}

boolean addChild(Node p, Node u) {
if (p == nil) {

= u; /] inserting into empty tree

} else {
int comp = compare(u.x, p.x);
if (comp < 0) {

p.left u;

else if (comp > 0) {

p.right = u;

else {

return false; /] u.x is already in the tree

u.parent = p;

return true;

An example is shown in Figure 6.7. The most time-consuming part
of this process is the initial search for x, which takes an amount of time
proportional to the height of the newly added node u. In the worst case,
this is equal to the height of the BinarySearchTree
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Figure 6.7: Inserting the value 8.5 into a binary search tree.

6.2.3 Removal

Deleting a value stored in a node, u, of a BinarySearchTree is a little
more difficult. If u is a leaf, then we can just detach u from its parent.
Even better: If u has only one child, then we can splice u from the tree by
having u.parent adopt u’s child (see Figure 6.8):

BinarySearchTree

void splice(Node u) {
Node s, p;
if (u.left != nil) {
s = u.left;
} else {
s = u.right;

if (u==r) {
r =s;
p = nil;
} else {
p = u.parent;
if (p.left == u) {
p.left = s;
} else {
p.right = s;
}

}
if (s !=nil) {
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Figure 6.8: Removing a leaf (6) or a node with only one child (9) is easy.

s.parent = p;

n--;

}

Things get tricky, though, when u has two children. In this case, the
simplest thing to do is to find a node, w, that has less than two children
and such that w.x can replace u.x. To maintain the binary search tree
property, the value w.x should be close to the value of u.x. For example,
choosing w such that w.x is the smallest value greater than u.x will work.
Finding the node w is easy; it is the smallest value in the subtree rooted at
u.right. This node can be easily removed because it has no left child (see
Figure 6.9).

BinarySearchTree

void remove(Node u) {

if (u.left == nil || u.right == nil) {
splice(u);

} else {
Node w = u.right;
while (w.left != nil)

w = w.left;

u.x = w.X;
splice(w);
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Figure 6.9: Deleting a value (11) from a node, u, with two children is done by
replacing u’s value with the smallest value in the right subtree of u.

6.2.4 Summary

The find(x), add(x), and remove(x) operations in a BinarySearchTree
each involve following a path from the root of the tree to some node in
the tree. Without knowing more about the shape of the tree it is difficult
to say much about the length of this path, except that it is less than n,
the number of nodes in the tree. The following (unimpressive) theorem
summarizes the performance of the BinarySearchTree data structure:

Theorem 6.1. BinarySearchTree implements the SSet interface and sup-
ports the operations add(x), remove(x), and £ind(x) in O(n) time per opera-
tion.

Theorem 6.1 compares poorly with Theorem 4.1, which shows that the
SkiplistSSet structure can implement the SSet interface with O(logn)
expected time per operation. The problem with the BinarySearchTree
structure is that it can become unbalanced. Instead of looking like the
tree in Figure 6.5 it can look like a long chain of n nodes, all but the last
having exactly one child.

There are a number of ways of avoiding unbalanced binary search
trees, all of which lead to data structures that have O(logn) time opera-
tions. In Chapter 7 we show how O(logn) expected time operations can
be achieved with randomization. In Chapter 8 we show how O(logn)
amortized time operations can be achieved with partial rebuilding opera-
tions. In Chapter 9 we show how O(logn) worst-case time operations can
be achieved by simulating a tree that is not binary: one in which nodes
can have up to four children.
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Discussion and Exercises §6.3
6.3 Discussion and Exercises

Binary trees have been used to model relationships for thousands of years.
One reason for this is that binary trees naturally model (pedigree) family
trees. These are the family trees in which the root is a person, the left
and right children are the person’s parents, and so on, recursively. In
more recent centuries binary trees have also been used to model species
trees in biology, where the leaves of the tree represent extant species and
the internal nodes of the tree represent speciation events in which two
populations of a single species evolve into two separate species.

Binary search trees appear to have been discovered independently by
several groups in the 1950s [48, Section 6.2.2]. Further references to spe-
cific kinds of binary search trees are provided in subsequent chapters.

When implementing a binary tree from scratch, there are several de-
sign decisions to be made. One of these is the question of whether or
not each node stores a pointer to its parent. If most of the operations
simply follow a root-to-leaf path, then parent pointers are unnecessary,
waste space, and are a potential source of coding errors. On the other
hand, the lack of parent pointers means that tree traversals must be done
recursively or with the use of an explicit stack. Some other methods (like
inserting or deleting into some kinds of balanced binary search trees) are
also complicated by the lack of parent pointers.

Another design decision is concerned with how to store the parent,
left child, and right child pointers at a node. In the implementation given
here, these pointers are stored as separate variables. Another option is to
store them in an array, p, of length 3, so that u.p[0] is the left child of u,
u.p[1] is the right child of u, and u.p[2] is the parent of u. Using an array
this way means that some sequences of if statements can be simplified
into algebraic expressions.

An example of such a simplification occurs during tree traversal. If a
traversal arrives at a node u from u.p[i], then the next node in the traver-
sal is u.p[(i + 1) mod 3]. Similar examples occur when there is left-right
symmetry. For example, the sibling of u.p[i] is u.p[(i + 1) mod 2]. This
trick works whether u.p[i] is a left child (i = 0) or a right child (i = 1)
of u. In some cases this means that some complicated code that would
otherwise need to have both a left version and right version can be writ-
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ten only once. See the methods rotatelLeft(u) and rotateRight(u) on
page 163 for an example.

Exercise 6.1. Prove that a binary tree having n > 1 nodes has n—1 edges.

Exercise 6.2. Prove that a binary tree having n > 1 real nodes has n+1
external nodes.

Exercise 6.3. Prove that, if a binary tree, T, has at least one leaf, then
either (a) T’s root has at most one child or (b) T has more than one leaf.

Exercise 6.4. Implement a non-recursive method, size2(u), that com-
putes the size of the subtree rooted at node u.

Exercise 6.5. Write a non-recursive method, height2(u), that computes
the height of node uin aBinaryTree.

Exercise 6.6. A binary tree is size-balanced if, for every node u, the size
of the subtrees rooted at u.left and u.right differ by at most one. Write
a recursive method, isBalanced(), that tests if a binary tree is balanced.
Your method should run in O(n) time. (Be sure to test your code on some
large trees with different shapes; it is easy to write a method that takes
much longer than O(n) time.)

A pre-order traversal of a binary tree is a traversal that visits each node,
u, before any of its children. An in-order traversal visits u after visiting
all the nodes in u’s left subtree but before visiting any of the nodes in u’s
right subtree. A post-order traversal visits u only after visiting all other
nodes in u’s subtree. The pre/in/post-order numbering of a tree labels
the nodes of a tree with the integers 0,...,n — 1 in the order that they
are encountered by a pre/in/post-order traversal. See Figure 6.10 for an
example.

Exercise 6.7. Create a subclass of BinaryTree whose nodes have fields
for storing pre-order, post-order, and in-order numbers. Write recursive
methods preOrderNumber(), inOrderNumber(), and postOrderNumbers()
that assign these numbers correctly. These methods should each run in
O(n) time.
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Figure 6.10: Pre-order, post-order, and in-order numberings of a binary tree.
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Exercise 6.8. Implement the non-recursive functions nextPreOrder(u),
nextInOrder(u), and nextPostOrder(u) that return the node that follows
u in a pre-order, in-order, or post-order traversal, respectively. These
functions should take amortized constant time; if we start at any node
u and repeatedly call one of these functions and assign the return value
to u until u = null, then the cost of all these calls should be O(n).

Exercise 6.9. Suppose we are given a binary tree with pre-, post-, and
in-order numbers assigned to the nodes. Show how these numbers can be
used to answer each of the following questions in constant time:

1. Given a node u, determine the size of the subtree rooted at u.
2. Given a node u, determine the depth of u.
3. Given two nodes u and w, determine if u is an ancestor of w

Exercise 6.10. Suppose you are given a list of nodes with pre-order and
in-order numbers assigned. Prove that there is at most one possible tree
with this pre-order/in-order numbering and show how to construct it.

Exercise 6.11. Show that the shape of any binary tree on n nodes can
be represented using at most 2(n — 1) bits. (Hint: think about recording
what happens during a traversal and then playing back that recording to
reconstruct the tree.)

Exercise 6.12. Illustrate what happens when we add the values 3.5 and
then 4.5 to the binary search tree in Figure 6.5.

Exercise 6.13. Illustrate what happens when we remove the values 3 and
then 5 from the binary search tree in Figure 6.5.

Exercise 6.14. Implement a BinarySearchTree method, getLE(x), that
returns a list of all items in the tree that are less than or equal to x. The
running time of your method should be O(n” + h) where n’ is the number
of items less than or equal to x and h is the height of the tree.

Exercise 6.15. Describe how to add the elements {1,...,n} to an initially
empty BinarySearchTree in such a way that the resulting tree has height
n— 1. How many ways are there to do this?
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Exercise 6.16. If we have some BinarySearchTree and perform the op-
erations add(x) followed by remove(x) (with the same value of x) do we
necessarily return to the original tree?

Exercise 6.17. Can a remove(x) operation increase the height of any node
in a BinarySearchTree? If so, by how much?

Exercise 6.18. Can an add(x) operation increase the height of any node
in a BinarySearchTree? Can it increase the height of the tree? If so, by
how much?

Exercise 6.19. Design and implement a version of BinarySearchTree
in which each node, u, maintains values u.size (the size of the subtree
rooted at u), u.depth (the depth of u), and u.height (the height of the
subtree rooted at u).

These values should be maintained, even during calls to the add(x)
and remove(x) operations, but this should not increase the cost of these
operations by more than a constant factor.
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